High-cycle fatigue of micron-scale polycrystalline silicon films: fracture mechanics analyses of the role of the silica/silicon interface
نویسندگان
چکیده
It is known that micron-scale polycrystalline silicon thin films can fail in room air under high frequency (40kHz) cyclic loading at fully-reversed stress amplitudes as low as half the fracture strength, with fatigue lives in excess of 1011 cycles. This behavior has been attributed to the sequential oxidation of the silicon and environmentally-assisted crack growth solely within the SiO2 surface layer. This ‘reaction-layer fatigue’ mechanism is only significant in thin films where the critical crack size for catastrophic failure can be reached by a crack growing within the oxide layer. In this study, the importance of the bimaterial (e.g., Si/SiO2) interface to reaction-layer fatigue is investigated, and the critical geometry and stress ranges where the mechanism is a viable failure mode are established.
منابع مشابه
A reaction-layer mechanism for the delayed failure of micron-scale polycrystalline silicon structural films subjected to high-cycle fatigue loading
A study has been made to discern the mechanisms for the delayed failure of 2-μm thick structural films of n+-type, polycrystalline silicon under high-cycle fatigue loading conditions. Such polycrystalline silicon films are used in smallscale structural applications including microelectromechanical systems (MEMS) and are known to display ‘metal-like’ stress-life (S/N) fatigue behavior in room te...
متن کاملHigh-cycle Fatigue in Micron-scale Structural Films of Polycrystalline Silicon: a Reaction-layer Failure Mechanism
A study has been made of high-cycle fatigue in 2-μm thick structural films of ntype, polycrystalline silicon for MEMS applications. Using an “on-chip” test structure resonating at ~40 kHz, such thin-film polysilicon is shown to display “metal-like” stress-life fatigue behavior in room air environments, with failures occurring after lives in excess of 10 cycles at stresses as low as half the fra...
متن کاملVery high-cycle fatigue failure in micron-scale polycrystalline silicon films: Effects of environment and surface oxide thickness
Fatigue failure in micron-scale polycrystalline silicon structural films, a phenomenon that is not observed in bulk silicon, can severely impact the durability and reliability of microelectromechanical system devices. Despite several studies on the very high-cycle fatigue behavior of these films !up to 1012 cycles", there is still an on-going debate on the precise mechanisms involved. We show h...
متن کاملFurther considerations on the high-cycle fatigue of micron-scale polycrystalline silicon
Bulk silicon is not susceptible to high-cycle fatigue but micron-scale silicon films are. Using polysilicon resonators to determine stress-lifetime fatigue behavior in several environments, oxide layers are found to show up to four-fold thickening after cycling, which is not seen after monotonic loading or after cycling in vacuo.We believe that the mechanism of thin-film silicon fatigue is ‘‘re...
متن کاملEvaluation of continuum damage at different temperatures for aluminum-silicon alloy of engine piston within low-cycle fatigue regime
In this article, the isothermal low-cycle fatigue continuum damage in the engine piston aluminum alloy has been evaluated at different temperatures. For this objective, experimental data of low-cycle fatigue tests on standard specimens were used at 280, 350 and 425°C. Based on the continuum damage mechanics method, the fatigue damage was calculated during cyclic loading. Obtained results, inclu...
متن کامل